O Level E Maths Tutorial 7: Equations and inequalities

Syllabus:

• solving linear equations in one variable

1. Solve 5x + 6 = -7.

• solving simple fractional equations that can be reduced to linear equations such as:

$$\frac{x}{3} + \frac{x=2}{4} = 3$$

$$\frac{3}{x-2} = 6$$

2. Solve these equations:

(i)
$$\frac{x}{3} + \frac{x=2}{4} = 3$$

(ii)
$$\frac{3}{x-2} = 6$$

- solving simultaneous linear equations in two variables by
 - substitution and elimination methods
 - graphical method
- 3. (i) Solve these equations for x and y.

$$y = 2x + 1$$
$$y = -x + 3$$

(ii) Sketch the graphs of these two lines to show how they can be solved graphically.

Dr Hock's Maths Tuition

- solving quadratic equations in one unknown by
 - factorisation
 - use of formula
 - completing the square for $y = x^2 + px + q$
 - graphical method

- 4. (i) Expand (x+1)(x-2).
 - (ii) Hence use the factorisation method to solve $x^2 x 2 = 0$.
- 5. The solutions of

$$ax^2 + bx + c = 0$$

are

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Use this formula to solve $x^2 - x - 2 = 0$.

• solving fractional equations that can be reduced to quadratic equations such as:

$$\frac{6}{x+4} = x+3$$

$$\frac{1}{x-2} + \frac{2}{x-3} = 5$$

6. Solve these equations.

(a)
$$\frac{6}{x+4} = x+3$$

(b)
$$\frac{1}{x-2} + \frac{2}{x-3} = 5$$

- formulating equations to solve problems
- 7. Solve the following simultaneous equations:

$$x + y = 1$$
$$2x - 3y = 4$$

8. The mass of a small pot is a kg. The mass of a small pot is b kg.

Ajay buys 5 small pots and 2 large pots with a total mass of 119 kg. Bhanu buys 5 small pots and 3 large pots with a total mass of 165 kg.

Form and solve two simultaneous equations to find the mass of a small pot and the mass of a large pot.

[N22/I/6]

- solving linear inequalities in one variable, and representing the solution on the number line
- 9. Solve these inequalities. In each case, represent the solution on the number line.
 - (i) 2x > 4
 - (ii) 2x + 5 > 2 8x
- 10. Solve these inequalities. In each case, represent the solution on the number line.
 - (i) (x+3)(x-2) > 0
 - (ii) $(x+4)(x-5) \le 0$